Iron Diagnosis & Removal

Bill Koebel, Eastern Regional Sales Manager October 23, 2019

ResinTech, Inc.

An industry-leader for over 30 years, ResinTech® manufactures a broad range of ion exchange resins, activated carbons and selective adsorbents for water and wastewater treatment.

- WQA Gold Seal Certified products
- ISO 9001:2015 Certified by Perry Johnson Registrars

Iron in Potable Water

- EPA Secondary Regulation
 - Limit of 0.3 ppm
- Causes staining on clothing/fixtures
- Can cause metallic taste/odor to water
- Not considered a health risk, more of a nuisance

Types of Iron

- Sequestered Iron
- Organically Bound (Heme)
- Iron Bacteria
- Ferric "Red Water"
- Ferrous "Clear Water"

Sequestered Iron

se-ques-ter /sə'kwestər/

verb. "To isolate or hide away"

- In water, a chemical agent that keeps iron dissolved in solution
- Most common sequestering agents are phosphates
 - poly-, hexameta-,

Sequestered Iron

- Typical testing will show iron
- Conventional treatment won't remove it

Sequestered Iron

- Bond can be broken down by heat.
- Use of anion/tannin resins can remove it.
- Verify presence by testing for phosphates.

- Iron bound in organic structure
- Typically found in "Tannins"
 - Humic, Fulvic, Tannic Acids
- Surface Water or Shallow Well
- Yellow/Brown tint to water

• Structure is "anionic" in nature

- Can be removed directly by anion/tannin resins.
- Oxidation by chlorine to destroy structure.
 - Follow oxidation by filtration

- When using anion/tannin resins, capacity is calculated based on Sulfate (SO₄) concentrations.
- Frequent regeneration aids in the prevention of organically fouling the resin.

Iron Bacteria

- Microorganism that uses iron for metabolic process.
 - Iron deposits on cell walls
 - Reddish, slimy, odor
 - Wells & surface waters

Iron Bacteria

- Best managed by chlorination
 - "Shock" chlorination
 - Continuous chlorination
- Filtration post oxidation to remove iron.

Ferric Iron (Fe+3)

- "Red Water" Iron
- Latin "ferrum" = iron
- Most stable form of iron
- Red in color
- Rust

Ferric Iron (Fe⁺³)

- Insoluble at near neutral pH
- Forms reddish/yellow precipitant.
- Ferric Hydroxide (FeOH₃)

Ferric Iron (Fe⁺³)

- Removed as a suspended solid
 - Filtration
 - Backwashable
 - Cartridge
- Settling
 - Clarification

- "Clear Water" Iron
- Dissolved in water
- Colorless
- Soluble in water as Ferrous Bicarbonate
 - ► Fe(HCO₃)₂

• If left untreated, can oxidize and precipitate to cause staining.

- Removal Options:
 - Oxidation/Precipitation
 - Water Softening

- Oxidation/Precipitation
 - Conversion of Fe⁺² to Fe⁺³
 - Can be accomplished by:
 - Oxygen- O₂ (Air)
 - Chlorine- HOCI
 - Ozone- O₃
 - Permanganate- KMn0₄

Ferrous Iron (Fe⁺²)

- Oxidizing filters
 - Catalytic oxidation of iron
- Manganese Greensand
- Manganese Dioxide
- Various others

- Once iron is oxidized, the iron precipitates.
- Proper maintenance of filtration method is critical

- Water Softeners remove Fe⁺² readily.
- Exchanges on the resin just like hardness ions (Ca+2/Mg+2)
- No limit to how much it can load
 - WHAT?

- Under anaerobic condition Fe⁺² is stable.
- Under low pH conditions Fe^{+2 or +3} is stable.
- Under these conditions the Fe⁺² elutes from the resin like hardness.

- Regeneration Aids
 - Sodium Bisulfite (NaHSO₃)
 - Sodium Hydrosulfite (Na₂S₂O₄)
 - Hydrochloric Acid (HCI)
 - Phosphoric Acid (H₃PO₄)
 - Citric Acid

- Limit loading on resin
- 400 to 600 grains/Cuft recommended.
- Prevents over elution of iron that leads to fouling.

Ferrous Iron (Fe⁺²)

- ppm as Fe X 1.79 = ppm as $CaCO_3$
- ppm as $CaCO_3 / 17.1 = GPG$ Iron
- 400 600 grains / GPG Iron = gallons/Cuft
- Perform hardness capacity calculation
- Whichever is less is your capacity

- Equipment set-up can also help minimize fouling.
 - Countercurrent regeneration
 - Fine Mesh Resin
 - Frequent regenerations

- Key to all of this is the prevention of Fe⁺² to Fe⁺³ oxidation during the regeneration cycle IN the water softener.
- Why and how does this occur?
 - O₂ dissolved in brine
 - ► 8-10 ppm is typical

Multiple Barriers

- More than one of these iron species can be present in any given water.
- Use of multiple techniques may be required to remove them.

Type of Iron

- Sequestered Iron
 - Heat, Anion Exchange
- Organically Bound (Heme)
 - Oxidation/Filtration, Anion Exchange
- Iron Bacteria
 - Disinfection/Filtration

Type of Iron

- Ferric "Red Water"
 - Filtration, Clarification
- Ferrous "Clear Water"
 - Oxidation/Filtration, Water Softener

THANK YOU

Bill Koebel

Eastern Regional Sales Mgr

- p. 412-716-7921
- e. wkoebel@resintech.com

